If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3+4x-5x^2=0
a = -5; b = 4; c = +3;
Δ = b2-4ac
Δ = 42-4·(-5)·3
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{19}}{2*-5}=\frac{-4-2\sqrt{19}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{19}}{2*-5}=\frac{-4+2\sqrt{19}}{-10} $
| (2)/(3)b-16=-4 | | 10x+19=6x+95 | | 12+0.2s=25-0.7s | | 5(s-80)=65 | | 231-7x=38+16x | | -12=(n)/(2)-6 | | 5(s-80)=64 | | 18-3c=6 | | 8-54c=-1 | | -19+-2s=-87 | | 17=v/3=15 | | x^2-2000=0 | | y/9+47=49 | | -3(z-61)=-60 | | 7.6x-7.5=7.7 | | -3(z-61)=-61 | | 94=29+5j | | 6=1q=14 | | 9(w-91)=27 | | -7x-6x-23x=180 | | 14/5=7/15xx= | | 20x-1+11x+1+30x-3=180 | | 5=-51+8x | | 61x+90=70x-45 | | y^2+y=-20 | | 11=x+ | | 20x-1+30x-3+11x-1=180 | | 4x+34=14-66x | | 26x+6+136=180 | | 2(5/3y+7)=1 | | 5(t-78)=45 | | 4x+34=63+x |